	Question	Answer	Marks	Guidance
1	(a)	(A transition element) has (at least) one ion with a partially filled d sub-shell/ d orbital ✓ Fe AND 1s²2s²2p63s²3p63d64s² ✓ Fe(II) / Fe²+ AND 1s²2s²2p63s²3p63d6 ✓ Fe(III) / Fe³+ AND 1s²2s²2p63s²3p63d6 ✓	4	ALLOW incomplete for partially filled DO NOT ALLOW d shell ALLOW 4s before 3d, i.e. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶ IF candidate has used subscripts OR caps OR [Ar], DO NOT ALLOW when first seen but credit subsequently, i.e. 1s ₂ 2s ₂ 2p ₆ 3s ₂ 3p ₆ 3d ₆ 4s ₂ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3D ⁶ [Ar]4s ² 3d ⁶
	(b)	EXAMPLES MUST REFER TO Cu ²⁺ FOR ALL		For Fe ²⁺ and Fe ³⁺ , ALLOW 4s ⁰ in electron configuration IGNORE electron configurations of elements other than Fe ANNOTATIONS MUST BE USED
		MARKS PRECIPITATION Reagent NaOH(aq) OR KOH(aq) ✓ States not required		ALLOW NaOH in equation if 'reagent' not given in description ALLOW a small amount of NH ₃ /ammonia DO NOT ALLOW concentrated NH ₃ DO NOT ALLOW just OH ⁻
		Transition metal product AND observation Cu(OH)₂ AND blue precipitate/solid ✓		ALLOW Cu(OH) ₂ (H ₂ O) ₄ ALLOW any shade of blue ALLOW (s) as state symbol for ppt (may be in equation)
		Correct balanced equation Cu ²⁺ (aq) + 2OH ⁻ (aq) → Cu(OH) ₂ (s) ✓ state symbols not required	3	ALLOW $[Cu(H_2O)_6]^{2+} + 2OH^- \rightarrow Cu(OH)_2(H_2O)_4 + 2H_2O$ For NH ₃ , also ALLOW : $[Cu(H_2O)_6]^{2+} + 2NH_3 \rightarrow Cu(OH)_2(H_2O)_4 + 2NH_4^+$
		IF more than one example shown, mark example giving lower mark		ALLOW full equation, e.g. $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 + Na_2SO_4$ $CuCl_2 + 2NaOH \rightarrow Cu(OH)_2 + 2NaCl$

Qu	estion	Answer	Marks	Guidance
	(b)	LIGAND SUBSTITUTION – 2 likely Reagent NH₃(aq)/ammonia ✓ State not required		IF more than one example shown, mark example giving lower mark ALLOW NH ₃ in equation if 'reagent' not given in description
		Transition metal product AND observation [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ AND deeper/darker blue (solution) ✓		DO NOT ALLOW precipitate ALLOW royal blue, ultramarine blue or any blue colour that is clearly darker than for [Cu(H₂O) ₆] ²⁺ ✓
		Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2^+} + 4H_2O$	3	
		OR Reagent Concentrated HCl OR (dilute) HCl(aq) OR NaCl(aq) ✓ State not required Transition metal product AND observation [CuCl₄]²- AND yellow (solution) ✓		ALLOW CuCl ₄ ²⁻ i.e. no brackets ALLOW any shades of yellow, e.g. yellow–green DO NOT ALLOW precipitate
		Correct balanced equation $[Cu(H_2O)_6]^{2^+} + 4Cl^- \longrightarrow [CuCl_4]^{2^-} + 6H_2O \checkmark$		ALLOW other correct ligand substitutions using same principles for marking as in two examples given
	(c)	Pt oxidised from 0 +4 ✓ N reduced from +5 to +4 ✓	2	ALLOW 1 mark for Pt from 0 to +4 AND N from +5 to +4 i.e. oxidation and reduction not identified or wrong way round DO NOT ALLOW Pt is oxidised and N reduced with no evidence
				DO NOT ALLOW responses using other incorrect oxidation numbers (CON)

Question	Answer	Marks	Guidance
(c) (ii)	Pt + 6HCl + 4HNO ₃ \longrightarrow H ₂ PtCl ₆ + 4NO ₂ + 4H ₂ O $\checkmark\checkmark$	2	1st mark for ALL species correct and no extras: i.e: Pt + HCl + HNO₃ → H₂PtCl₆ + NO₂ + H₂O DO NOT ALLOW charge on Pt, e.g. Pt²+ 2nd mark for correct balancing ALLOW correct multiples
(d)	CI C	3	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge' For bond into paper, ALLOW: """""""""""""""""""""""""""""""""""

C	Question		Answer	Marks	Guidance
	(e)	(i)	Donates two electron pairs to a metal (ion) ✓		ALLOW lone pairs for electron pairs
			forms two coordinate bonds ✓	2	ALLOW dative (covalent) bond for coordinate bond ALLOW 1 mark for a full definition of a ligand (without reference to 2:
					i.e. Donates an electron pair to a metal (ion) forming a coordinate bond ✓
		(ii)			ALLOW displayed formulae
			NH ₂ TOOO		'- charges' essential in (COO ⁻) ₂ structure
					DO NOT ALLOW -H ₂ N
			NH_2 \checkmark -0 0 \checkmark	2	
			Total	21	

C	uest	ion	er	Mark	Guidance
2	(a)		Ni 1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁸ 4s² ✓ d block: (Ni:) 'd' is highest energy sub-shell/orbital ✓		ANNOTATE WITH TICKS AND CROSSES, etc Note: Examples must be for Ni, not other d block elements ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸ ALLOW [Ar]4s ² 3d ⁸ OR [Ar]3d ⁸ 4s ² ALLOW upper case D, etc and subscripts, e.g. [Ar]4S ₂ 3D ₈ DO NOT ALLOW highest energy shell is 'd' OR 'd is the outer sub-shell' (4s as well)
			Ni ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ ✓ Transition element: has an ion with an incomplete/partially-filled d sub-shell/orbital ✓	4	ALLOW [Ar]3d ⁸ ALLOW electron configurations with 4s ⁰ ALLOW for example Ni ³⁺ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ OR [Ar]3d ⁷ No other Ni ions are acceptable ALLOW lone pair forms a coordinate bond to Ni ²⁺ (which will also collect the coordinate bond mark) ALLOW diagram of [Ni(H ₂ O) ₆] ²⁺ complex ion for 2nd marking point
			once in the right context ✓	3	
	(b)	(i)	$\begin{bmatrix} OH_2 & 90 & \circ \\ H_2OH_{H_2} & OH_2 \\ OH_2 & OH_2 \end{bmatrix}$ 3D diagram \checkmark 90° bond angle \checkmark	2	Must contain 2 'out wedges', 2 'in wedges' and 2 lines in plane of paper OR 4 lines, 1 'out wedge' and 1 'in wedge': $\begin{bmatrix} H_2O_{H_2}O_$

Quest	ion	er	Mark	Guidance
(b)	(ii)	A: NiCl₄ ²⁻ ✓		ALLOW [NiCl ₄] ²⁻ DO NOT ALLOW Ni(Cl ⁻) ₄ ²⁻
		B : Ni(OH) ₂ ✓	2	ALLOW Ni(OH) ₂ (H ₂ O) ₄ OR [Ni(OH) ₂ (H ₂ O) ₄]
	(iii)	C : [Ni(NH ₃) ₆] ²⁺ ✓	1	Square brackets essential 2+ charge must be outside square brackets ALLOW [Ni(OH) ₆] ⁴⁻
	(iv)	0.		1 mark for each side of equation
		$ [Ni(H2O)6]2+ + 6NH3 \longrightarrow [Ni(NH3)6]2+ + 6H2O $	2	ALLOW equilibrium sign ALLOW ECF from (iii) for the following: [Ni(NH ₃) ₄] ²⁺ (wrong number of NH ₃) Any 6 coordinate Ni ²⁺ complex with NH ₃ and H ₂ O ligands, e.g. [Ni(NH ₃) ₄ (H ₂ O) ₂] ²⁺ , [Ni(NH ₃) ₅ (H ₂ O)] ²⁺ , etc
				ALLOW from $[Ni(OH)_{6}]^{4-}$, $[Ni(H_{2}O)_{6}]^{2+} + 6OH^{-} \longrightarrow [Ni(OH)_{6}]^{4-} + 6H_{2}O$ OR $[Ni(H_{2}O)_{6}]^{2+} + 6NH_{3} \longrightarrow [Ni(OH)_{6}]^{4-} + 6NH_{4}^{+}$
(c)	(i)	C ₁₀ H ₈ N ₂ ✓	1	ALLOW atoms in any order
	(ii)	4 🗸	1	
	(iii)			Charge and N atom labels NOT needed ALLOW any attempt to show bipy. Bottom line is the diagram on the left.
			2	1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper:
		One mark for each structure 2nd structure must be correct mirror image of 1st structure		ALLOW structures with Ni in centre

Question	er	Mark	Guidance
(c) (iv)	3 marks available 1st mark Correct 4,4'-bipy structure shown separately or within attempted structure with Ni ²⁺ ✓		ALLOW aromatic rings
	2 marks The remaining 2 marks are available for a section of the polymer with repeat unit identified as follows:		H ₂ O OH ₂
	IF Ni is bonded to 4 H ₂ Os (bond to O) with a bond to N end of two 4,4'-bipy structure		H_2O OH_2
	OR IF each N of 4,4'-bipy is bonded to a Ni bonded to 4 H₂Os (bond to O), award 1 mark ✓	3	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
	IF correct repeat unit is shown, award 2 marks ✓✓ H ₂ O OH ₂ Ni Ni N N		Charge NOT needed. Square brackets NOT needed Bonds around Ni do NOT need to be shown 3D Accept bonds to H ₂ O (does NOT need to go to 'O') ALLOW the following structure for repeat unit for all 2nd and
	H_2O OH_2		3rd marks: H ₂ O Ni H ₂ O OH ₂ OH ₂ Ni OH ₂
	Total	21	

Question	er	Mark	Guidance
3	step 1 $Cu + 4HNO_3 \longrightarrow Cu^{2+} + 2NO_3^- + 2NO_2 + 2H_2O$ OR $Cu + 2H^+ + 2HNO_3 \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$ OR $Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$ step 2 2 equations with 1 mark for each $Cu^{2+} + CO_3^{2-} \longrightarrow CuCO_3 \checkmark$ $2H^+ + CO_3^{2-} \longrightarrow H_2O + CO_2 \checkmark$ step 4 $2Cu^{2+} + 4I^- \longrightarrow 2CuI + I_2 \checkmark$	4	ANNOTATE ALL Q8 WITH TICKS AND CROSSES, etc ALLOW multiples throughout IGNORE state symbols throughout ALLOW $Cu(NO_3)_2$ for $Cu^{2+} + 2NO_3^-$ AWARD 2 MARKS for a combined equation: $Cu^{2+} + 2H^+ + 2CO_3^{2-} \longrightarrow CuCO_3 + H_2O + CO_2 \checkmark \checkmark$ DO NOT ALLOW $2H^+ + CO_3^{2-} \longrightarrow H_2CO_3$ ALLOW $2Cu^{2+} + 4KI \longrightarrow 2CuI + I_2 + 4K^+$ ALLOW $Cu^{2+} + I^- \longrightarrow Cu^+ + \frac{1}{2}I_2$

Question	er	Mark	Guidance
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 67.6%, award 5 marks. Ignore any attempted equation in step 4 IF answer = 33.8% AND IF Cu ²⁺ /I ₂ in step 4 equation shown with 1:1 molar ratio, award 5 marks for ECF		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	amount $S_2O_3^{2-}$ used = 0.100 x $\frac{29.8}{1000}$ = 2.98 x 10^{-3} mol \checkmark		Working must be to 3 SF throughout until final % mark BUT ignore trailing zeroes, ie for 0.490 allow 0.49
	amount $I_2 = 1.49 \times 10^{-3} \text{ mol}$ OR amount $Cu^{2+} = 2.98 \times 10^{-3} \text{ mol } \checkmark$		ECF answer above
	amount Cu^{2+} in original 250 cm ³ = 10 x 2.98 x 10 ⁻³ = 2.98 x 10 ⁻² mol \checkmark Mass of Cu/Cu^{2+} in brass = 63.5 x 2.98 x 10 ⁻² g		ECF 10 x answer above ECF 63.5 x answer above ALLOW 1.88 g
	= 1.8923 g \checkmark percentage Cu in brass = $\frac{1.8923}{2.80} \times 100$ = 67.6% \checkmark MUST be to one decimal place (in the question)	5	ECF $\frac{\text{answer above}}{2.80} \times 100$ Answer must be to one decimal place ALLOW % Cu = 67.5 % IF mass of Cu has been rounded to
			1.89 g in previous step Common ECFs: 6.76% x10 missing 3/5 marks for calculation 2 d.p. MS states 1 d.p.
			33.8% IF Cu ²⁺ /I ₂ in step 4 equation with 2:1 ratio OR not attempted, response, 4/5 marks for calculation (moles Cu ²⁺ incorrect)
	Total	9	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
4	а		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ ✓	1	ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (i.e. 4s before 3d) ALLOW [Ar]4s ¹ 3d ⁵ OR [Ar]3d ⁵ 4s ¹
		ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓	1	ALLOW [Ar]3d ³ ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ⁰ OR [Ar]3d ³ 4s ⁰
	b		$Zn \longrightarrow Zn^{2+} + 2e^{-} \checkmark$ $Cr_2O_7^{2-} + 14H^+ + 8e^{-} \longrightarrow 2Cr^{2+} + 7H_2O \checkmark$ $4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$	3	WATCH for balancing of the equations printed on paper IF printed equations and answer lines have different balancing numbers OR electrons, IGNORE numbers on printed equations (i.e. treat these as working) and mark responses on answer lines only NO ECF for overall equation
					i.e. the expected answer is the ONLY acceptable answer
	С	i	Ligand substitution \checkmark $[Cr(H_2O)_6]^{3+} + 6NH_3 \longrightarrow [Cr(NH_3)_6]^{3+} + 6H_2O$	2	ALLOW ligand exchange 1 mark is awarded for each side of equation ALLOW equilibrium sign ALLOW 1 mark for 2+ shown instead of 3+ on both sides of equation ALLOW 1 mark for substitution of 4 NH₃: [Cr(H₂O) ₆]³⁺ + 4NH₃ → [Cr(NH₃)₄(H₂O)₂]³⁺ + 4H₂O
	d	i	Donates an electron pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair to a metal ALLOW dative (covalent) bond for coordinate bond
		ii	Donates two electron pairs OR forms two coordinate bonds ✓ Lone pairs on two O atoms ✓	2	First mark is for the idea of two coordinate bonds ALLOW lone pair on O and N DO NOT ALLOW lone pairs on COO ⁻ (could involve C) Second mark is for the atoms that donate the electron pairs Look for the atoms with lone pairs also on response to (d)(iii) and credit here if not described in (d)(ii)

Question	Expected Answers	Marks	Additional Guidance
iii	Forms two optical isomers OR two enantiomers OR two non-superimposable mirror images ✓	3	
	Minne Cranital		ALLOW any attempt to show bidentate ligand. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper:
	✓✓ For each structure		2nd mark for reflected diagram of SECOND stereoisomer. The diagram below would score the 2nd mark but not the first
			Cr Cr

Question	Expected Answers	Marks	Additional Guidance
е	N : H : Cr : O 11.1/14 : 3.17/1 : 41.27/52 : 44.45/16 OR 0.793 : 3.17 : 0.794 : 2.78 ✓	8	ANNOTATIONS MUST BE USED
	A : N ₂ H ₈ Cr ₂ O ₇ ✓		ALLOW A: $(NH_4)_2Cr_2O_7$
	lons: NH ₄ ⁺ ✓ Cr ₂ O ₇ ²⁻ ✓		IF candidate has obtained NH ₄ CrO ₄ for A, ALLOW NH ₄ ⁺ DO NOT ALLOW CrO ₄ ⁻
	B : Cr ₂ O ₃ ✓		
	Correctly calculates molar mass of C = 1.17 × 24.0 = 28.08 (g mol ⁻¹) ✓		ALLOW: (relative) molecular mass ALLOW: 28 ALLOW: 'C is 28'
	C : N ₂ ✓		
	Equation: $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$		ALLOW N ₂ H ₈ Cr ₂ O ₇ in equation.
	Total	22	